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A B S T R A C T   

Ultrasound imaging is a fast, widespread, and essential diagnostic technique for examining the body’s internal 
anatomy to find abnormal tissues or diseases. However, speckle noise in ultrasound imaging corrupts fine details 
and edges and degrades the image’s resolution and contrast, making diagnosing more difficult. In this work, a 
speckle reduction method using motion compounding is proposed. The objective of this work is ultrasound image 
enhancement keeping all the diagnostics details and edges. The proposed method uses the pre-locations frames 
that the sonographer generates before locating the required diagnostic frame. These frames are applied to the 
proposed optimized Modified Three-Step Search (O-MTSS) algorithm to enhance the final processed frame. The 
O-MTSS algorithm is a hybrid between the Three Step Search algorithm (TSS) and the New Diamond Search 
Algorithm (NDS). The method requires a scoring layer for storing additional frames to select optimal frames that 
will be used for enhancement. The proposed methodology is tested on synthetic and real ultrasound images. The 
outcomes produce considerable speckle reduction while maintaining the image edges with good computational 
time for real-time scanning. The result is evaluated by subjective physicians, radiologists, and image evaluation 
metrics. According to the percentages of the subjective analysis, there is a remarkable improvement in the 
processed image. The proposed algorithm result is compared with existing algorithms; It is observed that the 
improvement in terms of signal to noise ratio, peak signal to noise ratio, mean square error, root mean square 
error and structural similarity index values of the proposed method are 4.6%, 3.32%, 12.02%, 6.2% and 1.57% 
respectively over Non-Local Low-Rank (NLLR) method. According to qualitative and quantitative analysis, the 
suggested method outperforms existing speckle reduction techniques regarding edge and fine detail preservation.   

1. Introduction 

Ultrasound imaging is becoming more popular in clinical diagnosis 
and is preferred for many reasons. It has many advantages compared to 
computed tomography (CT) and magnetic resonance imaging (MRI), 
such as being low-cost, portable, non-invasiveness, more economical, 
harmlessness, and compact while being free from ionizing radiation and 
offers real-time operation [1–3]. Ultrasound scanners obtain ultrasound 
images (USI) according to the principle of ultrasonography (echo im-
aging). The pulsed sound waves generated by the scanner are applied to 
the body’s tissues [2,4]. Unfortunately, UIs contain speckle noise due to 
the destructive or constructive interference between different ultrasonic 
waves during the image generation phase [5–7]. Speckle noise is an 

unfavourable factor in USI because it complicates the diagnosis of dis-
eases by clinicians. In order to perform better analyses and diagnoses in 
many applications (such as object detection and visualization of body 
organs), reducing noise in US medical images is a crucial step that has 
evolved into a preprocessing requirement. This is done without affecting 
crucial diagnostic features in the image [7]. Several methods have been 
developed to solve this problem [6,8]. 

Inspired by the early researchers’ works in speckle noise reduction to 
improve the quality of US medical images while maintaining the fine 
details, this paper proposes a method using MC with optimized modified 
three-step search (O-MTSS) for the despeckling of USI. The modified 
three-step-search (MTSS) is used in the proposed method, one block 
matching algorithm suitable for video compression for computing 
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motion vectors (MV) between two frames. 
The proposed method is implemented and applied on synthetic USI 

by field II simulation software and real USI. Subjective radiologists, 
physicians, and objective quantitative criteria evaluated the recon-
structed images. The results are compared with well-known despeckling 
algorithms to prove the suggestion’s merit. For comparison and per-
formance evaluation, quality evaluation metrics, including SNR, root 
mean square error (RMSE), peak signal to noise ratio (PSNR), mean 
square error (MSE), structural similarity index (SSIM), an equivalent 
number of looks (ENL) and calculation time are considered. 

The main contributions of this work are:  

• To the best of our knowledge, it is the first time to propose a practical 
and implementable processing chain for ultrasound image 
enhancement using motion computing. There are no extra steps for 
regular scanning without any overheads added to the scanning.  

• A hybrid search algorithm, which utilizes the three-step search (TSS) 
and the newly developed diamond search (NDS) algorithms, has 
been proposed for motion compensation to find MV macroblocks 
between the old and current frames.  

• Due to the computationally intensive nature of motion detection 
techniques, an optimized implementation framework is proposed to 
enable algorithm implementation on contemporary PC systems. 

The rest of this paper is structured as follows: The background of the 
modified three-step search technique and the new cross-hexagonal 
search algorithm are shown in Section 2. Section 3 presents the sug-
gested methodology in detail. Results and discussions using synthetic 
and actual data are presented in Section 4. Finally, Section 5 concludes 
the work. 

2. Related work 

Speckle noise can be improved using various techniques, including 
compound imaging or frame-based processing. Frame-based processing 
can be done using the spatial domain, transform domain, and deep 
learning. In contrast, image compounding can be done by frequency 
compounding (FC), spatial compounding (SC), and motion compound-
ing (MC) [9]. 

The transform domain technique alters the transform coefficients, 
whereas spatial domain techniques operate directly on the pixels [10]. 
All methods of compounding images are created by generating multiple 
images of the speckle noise distribution that is pertinent. These images 
are then statistically averaged. This can be achieved by either changing 
the angle of the ultrasound beam in the SC or varying the imaging fre-
quency between different frames in the FC. The MC technique combines 
many successive frames when the probe moves or when there is an 
involuntary movement, such as a heartbeat or stomach movement. 
Motion compensation of the frames prior to averaging is necessary 
because direct frame averaging could result in blurring and losing the 
boundaries of the organs [9]. 

Although the frame-based processing does not decrease the frame 
rate, information losses must occur due to the lower signal to noise ratio 
(SNR). Although with a lower frame rate, the methodology based on 
compound imaging is still essential for image enhancement because it 
can improve the image’s texture without losing too much detail [9]. 

Some of the popular US speckle noise reduction techniques are Lee 
[11] and Kuan [12] filters which are based on reducing the Mean square 
Error; the Frost filter uses an exponential damped kernel to maintain the 
slight edges [13]. In addition, the Median filter is best for removing 
impulsive noise from images [14], and the Mean filter is simple, and the 
most efficient noise reduction filter; however, a blurred effect is pro-
duced [15]. Bilateral filter [16] and Anisotropic diffusion [17] are the 
most effective techniques due to their excellent edge preservation abil-
ity. However, these techniques do poorly with images of significant 
noise because they distort the correlations between neighbouring pixels 

[18,19]. Tay et al. created a squeeze box filter (SBF) to eliminate speckle 
noise, which was motivated by the concept of reducing pixel fluctuation 
in homogeneous regions while retaining (or enhancing) the variations in 
the mean values of various regions [20]. 

Zhu et al. [21] introduced a low-rank non-local filter that utilized a 
guiding image to help choose possible patches for non-local filtering 
when there were large speckles. Non-local methods always search for 
comparable patches within a square window. This technique does not, 
however, always work well for edge areas. The patch size must also be 
pre-learned before being fixed for the test images. Considering the 
superpixel characteristics around the region’s edges, Chen et al. [5] 
presented a superpixel version of binary filtering to protect the local 
structure better while removing noise. 

Mei et al. [22] presented a technique that consists of three steps. The 
first step is estimating the noise-free image using an enhanced Optimal 
Bayesian Non-Local Means (OBNLM) filter, where a new vector form 
represents each pixel patch. In the second step, the parts of the picture 
with low redundancy are then identified using a new index termed the 
redundancy index of each pixel patch. Finally, to recalculate the filter 
output and construct the suggested approach’s final result, another new 
vector form is employed to represent the pixel patch in low redundancy 
areas acquired in the next step. This technique has high complexity, and 
Low contrast features are typically severely blurred. 

Zhang et al. [23] presented a novel hybrid method in which 
Nonlinear Coherence Diffusion (NCD) and Laplacian Pyramid Based 
Nonlinear Coherence Diffusion (LPNCD) are combined. The novel 
method shows a strong capacity to maintain tissue features while 
improving coherence. Shereena et al. [10] introduced a novel non-local 
means (NLM)-based model in which the input picture is subjected to 
Grey Wolf Optimization (GWO) in order to obtain the design parameters 
of the NLM filter. The NLM filter receives the optimal parameters and 
the noisy picture to produce the denoised image. Salih et al. [24] pre-
sented a novel noise reduction scheme for USI by implementing the 
kernel principal component analysis (PCA) into the NLM and computing 
the similarity in a high-dimension kernel PCA subspace. The kernel 
representation can perform better even in highly noisy conditions since 
it resists noise. Additionally, it considers the pixels’ higher-order sta-
tistics, which can result in perfect edge preservation. 

In the transform domain techniques, the most widespread trans-
formation is the wavelet transform used for converting from the time 
domain to the frequency domain, and the inverse wavelet transform is 
used in reverse. Nowadays, wavelet transform is used for removing 
speckles from USI [25]. Some of these techniques, multiscale trans-
formations like contourlet, Ridgelet, and wavelet, have been suggested 
by Nisha et al. [26]. Coefficients are thresholded using Sureshrink, 
Bayeshrink, and Neighsureshrink after decomposition. Different MRI 
and CT images are used. According to SSIM, PSNR, and WSNR metrics, 
Neighsureshrink with Contourlet-based denoising produced higher re-
sults for medical images. 

Sirapat Chiewchanwattana et al. [27] introduced a despeckling filter 
intending to maintain all necessary properties without degradation. The 
suggested technique uses a cuckoo search algorithm and an adaptive 
thresholding function (CS-WT thresholding adaptive filter). With less 
complexity, lower MSE, and MAE, it keeps the textures, edges, and lines. 
Comparatively, PSNR and SSIM are better than other optimization 
techniques. Leena Jain et al. [28] suggested a new, more general 
thresholding function for speckle reduction that was utilized in 
conjunction with the Daubechies 8 wavelet as the decomposition func-
tion with two levels. Saurabh Khar [29] presented a method that used a 
non-local means (NLM) filter with square-chord distance to reduce 
speckle noise from the DWT approximation coefficients and low rank- 
based Weighted Nuclear Norm Minimization (WNNM) in order to 
reveal the sparsity property of DWT. 

Simone Cammarasana et al. [30] developed a new deep-learning 
architecture for the real-time noise removal of ultrasound pictures. 
First, state-of-the-art methods are compared for denoising (such as low- 
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rank and spectral approaches) and determined that WNNM (Weighted 
Nuclear Norm Minimization) provided the highest accuracy, retention of 
anatomical details, and edge enhancement. After that, they suggested a 
tuned variation of WNNM (tuned-WNNM), which increased the quality 
of the denoised pictures and expanded its application to USI. Using a 
deep learning architecture, the tuned WNNM duplicated WNNM find-
ings in real-time, both qualitatively and numerically. Kai Zhang et al. 
[31] used the construction of feed-forward denoising convolutional 
neural networks (DnCNNs) for image denoising, independently from the 
noise level. 

Ahmed F. Elnokrashy [9] presented an MC method based on O-ARPS 
for motion estimation in the compounding technique. When the US 
probe or the scanned organ is slightly moved, the speckle pattern will 
become decorrelated. The tissue will be distorted, and the picture will be 
blurry when the USI is directly compounded. So, prior to compounding, 
motion estimation (ME) is required. Experimental in vivo images 
demonstrated that the speckle noise was significantly decreased without 
degrading the boundary of the organ. Additionally, enhanced picture 
perception was accomplished by maintaining a few texture features with 
Timing Performance close to real-time. 

3. Background 

3.1. Three step search algorithm (TSS) 

TSS, proposed by Koga et al. [32], is one of the efforts to perform a 
fast motion estimation algorithm. The first step in this algorithm is to 
define the search window (SW) size, search for the best matching, and 
plot 9 points in the centre of SW at an equal distance of step size (SS). 
Motion error measurement or block distortion measure (BDM) is usually 
used for block matching (BM) to calculate the difference between two 
blocks. There are two main error measurements, the sum of absolute 
difference (SAD) represented in Eq. (1) and the sum of squared errors 
(SSD) calculated by Eq. (2). 

SAD =
∑MBy

y=1

∑MBx

x=1
|I(x, y, t) − I’(x, y, t − 1)| (1)  

SSD =
∑MBy

y=1

∑MBx

x=1
[I(x, y, t) − I’(x, y, t − 1) ]2 (2)  

where MBy, MBx are the row and column of the macroblock. x and y are 
the indexes of column and row, respectively. I and I’ are the pixels’ 

values compared to the current and previous macroblocks. 
The TSS algorithm is summarized as follows:  

1. Plot 9 points in the SW at a step size ss = 4 and check 9 points in the 9 
× 9 SW.  

2. The step size is divided by 2, i.e., ss = 2, and 8 points are checked to 
generate a 5 × 5 square shape pattern. If the minimum BDM is one of 
the 9 points, this point is considered a centre point in step 3.  

3. Step size is divided by 2, i.e., ss = 1, and check 8 points to generate a 
3 × 3 square shape pattern, and the search will be terminated. 

The final MV is the minimum BDM point at the 3 × 3 square shape 
pattern. Fig. 1 shows the two different search paths of TSS for estimating 
an MV within the SW. TSS can be easily extended to an n-step search for 
a larger SW. Twenty-five points are required to check for TSS. 

3.2. New cross hexagonal search algorithm (NCHEXS) 

NCHEXS was proposed by Kamel Belloulata et al. [33]. In this al-
gorithm, two small/large cross patterns (SCSP/LCSP) were used as the 
initial three steps and two small/large hexagonal patterns (SHSP/LHSP) 
as the later step of the search. Fig. 2 shows the search path of NCHEXS. 
At the beginning of this algorithm, initialize SCSP by plotting 5 points at 
the centre of SW. The algorithm is summarized as follows:  

1. Stop searching if the SCSP’s centre contains the smallest BDM point; 
otherwise, move on to step 2.  

2. Stop searching if the minimum BDM point is at the centre of a newly 
formed SCSP; otherwise, move on to step 3.  

3. Check two unchecked points of the square centre biased and three 
unchecked points of the LCSP to show the best possible hexagonal 
search direction.  

4. A new LHSP is formed by considering a centre point as the minimum 
BDM point in the previous step. If the minimum BDM point is found 
at the centre of a new LHSP, go to step 5; otherwise, again form a new 
LHSP, i.e., repeat step 4.  

5. If the minimum point is found at the centre of the LHSP, shift to the 
SHSP and find the best MV. 

3.3. Modified three step search algorithm 

MTSS, proposed by Kamble et al. [34], is one of the search algorithms 
to perform a fast motion estimation algorithm. The MTSS combines two 

Fig. 1. Two different search paths for TSS.  Fig. 2. Search path in New Hexagon Search motion estimation.  
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approaches: TSS and NCHEXS. The MTSS approach estimates an MV 
compared to the previous frame. 

Fig. 3 shows the flowchart of MTSS and has the following steps:  

1. Initially, MTSS started using the first step from TSS and NCHEXS, so 
13 points are checked, as shown in Fig. 4.  

2. TSS will execute if the minimum BDM point is found at the outer 
point of the 9 × 9 SW.  

3. If the minimum BDM point is found at the four outer points of the 
SCSP, then NCHEXS will execute. 

The two search paths of the proposed MTSS approach are shown in 
Fig. 5. 

4. Methodology 

In MTSS, the first step in TSS and the NCHEXS are checked, and since 
the motion measure error (ME) is the least, the search continues on its 
path, as shown in Fig. 4. However, this method is not always correct in 
finding MVs because the first step may be wrong and, therefore, will 
continue on the wrong path. As a result, the MTSS is modified to 

continue in the path that achieves two minimum consecutive ME, and 
the NCHEXS is replaced with a new diamond search (NDS) specifically 
designed to address the ultrasound images. 

This paper proposes a complete workflow to implement a despeck-
ling ultrasound image framework. The proposed method passes through 
four stages, as shown in Fig. 6. First, the preprocessing stage uses a filter 
to remove the white noise and enhance motion detection. Second is the 
motion detection stage, in which the motion is detected by calculating 
the MV between the different frames. Third, the frame selection stage, in 
which each frame is chosen to be stored or omitted. 

Finally, the compensation stage averages the compensated frames 
and reduces the speckle noise. These stages are explained in detail in the 
following subsections. 

4.1. Preprocessing 

At this stage, a preprocessing step is performed on the ultrasound 
images (frames) before applying the O-MTSS algorithm. Specifically, a 
low-pass filter in the form of a Gaussian filter is applied to remove the 
white Gaussian noise that is inherent in the hardware of the ultrasound 
machine. This filter also serves to enhance motion detection. The search 
for the correct MV may fail if the macroblocks lack correlation. Although 
the correct MV may be close, the search algorithm may fail to find it. 
However, applying a low-pass filter enables better correlation between 
the adjacent blocks, thereby improving the accuracy of the MV’s abso-
lute error result., as shown in Fig. 7. 

4.2. Motion detection 

Estimating motion in ultrasound is challenging due to the nature of 
spots associated with ultrasound frames. Several block-matching algo-
rithms have been proposed to estimate motion displacement in ultra-
sound frames [9]. This paper proposes the O-MTSS, a block-matching 
algorithm, to enhance the compound motion image. O-MTSS is an 
optimized version of the original MTSS. 

The proposed O-MTSS approach calculates motion compensation 
prediction error (MCPE) between two successive frames. The O-MTSS 
approach is a hybrid algorithm that combines the New Diamond Search 
algorithm (NDS) and TSS algorithm. The NDS algorithm employs one 
search pattern, as shown in Fig. 8. In the NDS, the pattern will repeat 
itself until the minimum BDM point is the pattern’s centre or the search 

Fig. 3. Flowchart of MTSS.  

Fig. 4. The first step in MTSS.  

Fig. 5. Two search paths in MTSS.  
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is outside the search window. 
In the O-MTSS algorithm, a decision is taken for each MB whether to 

follow the search path of the NDS or the TSS. This decision is based on 
which path will achieve two minimum consecutive. In other words, a 
step is taken in both TSS and NDS to find the least minimum of the two 
searches. Then another step is taken in both paths and finds the least 
minimum. If TSS gets two consecutive minimums, the search continues 
on this path and the same for NDS. The flowchart and two path searches 
for the proposed O-MTSS approach are illustrated in Figs. 9, 10, 
respectively. 

The O-MTSS is summarized as follows:  

1. One step in TSS is checked. If minimum BDM is found at the centre, 
then MV is zero and stop searching; otherwise, go to step 2.  

2. One step in NDS is checked. Find the NDS minimum point.  
3. If (TSS min < NDS min), increment the TSS counter and put zero to 

the NDS counter; else, increment the NDS counter and put zero in the 
TSS counter.  

4. If the TSS counter equals two, continue in the TSS path illustrated in 
Fig. 1; otherwise, go to step 5.  

5. If the NDS counter equals two, continue in the abovementioned NDS 
path; otherwise, go to step 1.  

6. If the TSS is outside the search window, continue in the NDS path and 
compare the minimum of them; otherwise, go to step 8.  

7. If (TSS min < NDS) min, then TSS point in the final mv; otherwise, 
NDS point is the final MV.  

8. If the NDS is outside the search window, continue in the TSS path, 
compare the minimum, and go to step 7. 

4.3. Frame selection 

The motion compounding approach depends on compounding 
different decorrelated speckle noise frames. If there is no significant 
movement between the frames, compounding these frames will not be 
enhanced. So, the frames that will be used must be selected according to 
a specific motion threshold. The threshold is selected experimentally 
based on the try-and-error method to find the suitable threshold. 

The sum of the absolute of all MVs of the frame is calculated. Three 
cases are rested against the chosen threshold. First, when the motion 
between frames is close to the threshold, there is a motion between the 

Fig. 6. The procedure of the proposed method.  

Fig. 7. The effect of the Gaussian filter on absolute error.  

Fig. 8. New Diamond Search (NDS) pattern.  
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frames in the same body area, and these frames are stored for motion 
compounding. Second, when the motion between frames is less than the 
threshold, there is almost no motion, and the frame is neglected. Finally, 
when the motion exceeds the upper threshold, this indicates a significant 
motion. In this case, the frame buffer is reset, and the current frame is 
considered the first frame of the new location. 

4.4. Compensation and average 

4.4.1. Motion detection optimization 
At first, the MBs always start their search from zero (the Centre 

point). The body’s organs always move together. Hence, starting every 
time from the beginning to calculate the MV is not necessary. 

During the search, the last two consecutive MVs are compared. If the 
average MV is taken, the value of the following MV can be expected. So, 
the search will start from the average MV point of the previous MBs. The 
average can be in the second order (i.e., take the average of two MV 

before), third order (average three MV before), and so on. When using 
average MV, the search starts from a known place, and there is a high 
probability that it will be close to the solution. This will significantly 
speed up finding the MV, reducing time and error. 

Finally, the computed MV is used for each block to compensate for 
the movement in the new frame, and then a statistical average of the 
compensated frames is taken to reduce the speckle noise. According to 
the US sonographer, this can be done using more frames if higher 

Fig. 9. Pseudo code of motion detection using O-MTSS.  

Fig. 10. Two search paths in O-MTSS.  

Table 1 
Evaluation Parameters.   

Definition Equation 

SNR The amount of image noise 
content [35]. The higher 
the ratio, the better the 
image quality 

SNR =
If (i, j)
̅̅̅̅̅̅̅̅̅̅
MSE

√

PSNR PSNR measures the 
similarity of the image Ir 
with the image If [35 36], 
and It is usually 
represented in decibels 
(dB) [37]. 

PSNR = 10 log10
L2

MSE
Where, 

L: the largest possible value of the intensity 
in the original image. 

MSE MSE is a distortion measure 

[37]. The lower value of 
the MSE shows a minimal 
error [35]. 

MSE =

∑R,S
(i,j)[If (i, j) − Ir(i, j)]2

R × S 

RMSE RMSE indicates the 
nearness between two 
images: the lower value, 
the better-quality image  
[35]. 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√

SSIM SSIM compares two 
separate images’ contrast, 
structure, and luminance  
[38]. The range of SSIM 
values is [-1, 1] 

SSIM =

(2μrμf + c2)(2σrf + c2)

(μr
2 + μf

2 + c1)(σr2 + σf 2 + c2)
Where, 

μr, μf: the local means. 
σr, σf: standard deviations. 
σrf: cross-covariance for images. 
C1 and C2 are constants to avoid instability. 

ENL ENL measures the speckle 
noise level in a denoised 
image’s homogeneous area 

[39]. A higher value of ENL 
shows effective 
suppression of speckles  
[40]. 

ENL =
mean2(f)

variance2(f)
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smoothness is required. 
Fig. 6, step 4, shows the processing stages for motion compensation 

and compounding, in which a preprocessing filter is applied to the old 
and current frames, motion compensation is made between them, and 
the compensated frame is statistically averaged. 

4.4.2. Image evaluation parameters (IEP) 
Image Evaluation Parameters (IEP) are essential in measuring a 

processed image’s performance or quality. Here, six sorts of IEPs, such as 
Signal Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Mean 
Square Error (MSE), Root Mean Square Error (RMSE), Structural Simi-
larity Index Measure (SSIM), and Equivalent Number of Looks (ENL), are 
used in this work. A technique that requires an original image free of 
noise is known as a full reference metric, while metrics that use only the 
image without noise and a noisy image are non-referenced. Here, Ir 
denotes the reference or noise-free image, If is the filtered or denoised 
image and In represents the noisy image. R and S indicate the size of the 
image. The term (i, j) is used to represent the spatial position of a pixel. 
Table 1 illustrates a summary of the used parameter along with their 
definition. 

5. Results 

This study evaluated and compared the performance of a proposed 
methodology for despeckling ultrasound images (USI) to other well- 
known despeckle algorithms. To validate the effectiveness of the pro-
posed method, synthetic and simulated USI obtained using Field II 
Simulation software and real USI were used and compared with the 
other methods. The comparison results demonstrated the proposed 
methodology’s effectiveness in reducing speckle noise in USI. 

5.1. Results on synthetic simulated US 

The Field II Toolbox simulates ultrasound scanner images [5,41]. 
The synthesized image looks very close to the real ultrasound image, as 
shown in Fig. 11. Reference images (with low noise level or without 
noise) are used to compare the denoising output to determine the 
improvement in image quality and evaluate the methodology’s effec-
tiveness. Usually, reference and noisy images can be obtained using the 
same scanner and operating conditions. This is very difficult due to the 
high dependence on the operator for ultrasound exams and the random 
variation of speckle phenomena in each acquisition and scattering [42]. 
In this case, traditional quality metrics cannot indicate the quality ob-
tained by speckle reduction. So, it is helpful to use synthetic images 
obtained, for example, by computer simulations or anatomical phan-
toms. In our study, Field II is used to simulate a B-mode ultrasound 
image Fig. 11(b) from a noise-free MRI of a kidney as the reference 
image for speckle reduction evaluation Fig. 11(a). 

In this research, an 8-bit grey-level kidney standard image (148 ×
196 pixels) is used to evaluate the effectiveness of noise reduction 
Fig. 11(a). The speckle noise is added to the image by Field II. All image 
processing was performed with MATLAB® (R2021a MathWorks). The 
used system configuration consists of a personal computer with a 3rd 
generation Intel® Core™ i7-3610QM running at 2.30 GHz and using 64- 
bit Windows 10 Pro with 8 GB of RAM. 

The proposed method is compared with four techniques, local 
statistics-based filtering (Lee) [11,43], the speckle reducing anisotropic 
diffusion (SRAD) [17,44], the Denoising Convolutional Neural Networks 
(DnCNNs) [31], the Optimized Adaptive Rood Pattern Search (O-ARPS) 
[9] and the Non-Local Low-Rank method (NLLR) [21]. The proposed 
method used four frames with different speckle patterns for averaging 
and a 16 × 16 macroblock size. 

Table 2 and Table 3 summarize the performance of the speckle 
reduction techniques applied to the simulated Field II kidney image by 
calculating several performance metrics. Table 2 reveals that the pro-
posed method is better than all other speckle reduction methods in SNR, 
PSNR, MSE, RMSE, SSIM and some ENL values among the four speckle 
noise reduction methods in the kidney image. SNR improvements of the 
proposed O-MTSS method over that of the NNLR and O-ARPS methods 
are 4.6% and 8.58%, respectively. PSNR improvements of the proposed 

Fig. 11. Simulated speckle noise. (a) Reference MRI image for the comparison. 
(b) Noisy Field II image. 

Table 2 
Image quality metrics for different methods on kidney image.  

Methods SNR PSNR MSE RMSE SSIM Time (sec) 

Noisy  9.167   13.523   2888.947   53.7489   0.12562   – 

Lee  9.942   14.435   2341.981   48.394   0.38817   0.5093 

SRAD  9.82  14.269  2433.215  49.3276  0.37126  0.506 
DnCNN  10.99  16.234  1547.786  39.3419  0.32449  – 
O-ARPS  11.31   16.281   1530.953   39.1274   0.30669   2.196 

NLLR  11.74   16.732   1380.066   37.1493   0.4589   1.627 × 103 

Proposed method  12.28   17.288   1214.146   34.8446   0.46609  1.915  

Table 3 
The ENL metric for different methods on kidney images depends on each region 
of interest (ROI).  

Methods ROI (red) ROI (blue) ROI (magenta) 

Noisy image  0.0355  0.0428  0.055 
Lee  5.0887  6.5087  2.6679 
SRAD  3.4453  3.0170  2.1417 
DnCNN  0.9345  1.9166  0.6403 
O-ARPS  0.4187  0.3493  0.5254 
NLLR  5.7492  2.9575  0.7693 
Proposed method  3.8792  8.9247  1.3221  
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O-MTSS method over that of the NNLR and O-ARPS methods are 43.32% 
and 6.19%, respectively. MSE improvements of the proposed O-MTSS 
method over the NNLR and O-ARPS methods are 12.02% and 20.7%, 
respectively. RMSE improvements of the proposed O-MTSS method over 
the NNLR and O-ARPS methods are 6.2% and 10.95%, respectively. 
SSIM improvements of the proposed O-MTSS method over that of the 
NNLR and O-ARPS methods are 1.57% and 51.97%, respectively. 
Table 3 lists the ENL values acquired in three ROIs. According to Table 3, 
the proposed method attains the highest ENL values of ROI (blue). This 
means the resulting image has excellent speckle noise suppression 
ability in the homogenous regions. In the ROI (red) and ROI (magenta), 
the proposed method obtains the third highest ENL values after NLLR 
and Lee, respectively. 

It can be observed from Fig. 12 that our proposed method yields 
more satisfactory results in terms of visual performance. For Lee and 

SRAD, the denoised image in Fig. 12(c) and 12(d) are blurred. Based on 
Fig. 12(e), it is evident that the O-ARPS technique preserves the edges’ 
boundary, but the speckle noise level remains significantly high. Fig. 12 
(f) shows that the NLLR approach exhibits extended computation time, 
superior quality metric performance, and minimal image blurring. 
However, in some cases, a lower level of speckle noise could aid in 
diagnosis. The DNCNN illustrated in Fig. 12(g) effectively preserves 
edges and contrast; however, it struggles to accurately represent the 
original texture, especially in certain textures like the white band area 
and mid-range level kidney tissue. The denoised image by the proposed 
method in Fig. 12(h) shows an image with higher speckle noise reduc-
tion and edge preservation performance, and the image’s details are well 
preserved. The profile of each image is obtained from a column in white 
on the noise-free (reference) image. 

For a fair comparison, the suggested approach performance ratio of 
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Fig. 12. Comparison of despeckling results on kidney Field II images with profiles. (a) Reference Image (b) Noisy “kidney” and the results by (c) Lee, (d) SRAD (e) O- 
ARPS, (f) NLLR, (g) DNCNN and (h) the proposed O-MTSS. 
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PSNR and SSIM is compared with the Leena Jain method [28] and 
Saurabh Khar method [29]. Table 4 reveals that according to the noisy 
image, the proposed O-MTSS has achieved the best performance ratio in 
both PSNR (27.8415%) and SSIM (271.031%). The performance ratio is 
calculated by the percentage of change equation in Eq. (3). 

percentofchange =
New − Original

Original
× 100 (3)  

Table 4 
performance ratio of PSNR and SSIM for four denoising methods.  

Methods Method [28] Method [29] Proposed method 

PSNR  3.6082%  6.9848%  27.8415% 
SSIM  46.2258%  242.6667%  271.0317%  

Table 5 
Doctors’ scores for liver-kidney images.  

Metrics Evaluation score Original Img1 Img2 Img3 Img4 Img5 

Smooth Score ¼ 0 6 0 0 0 0 0 
Score ¼ 1 1 2 2 1 2 3 
Score ¼ 2 0 3 3 4 1 0 
Score ¼ 3 0 2 2 2 4 4  

Contrast Score ¼ 0 5 2 1 1 1 1 
Score ¼ 1 2 1 2 2 2 3 
Score ¼ 2 0 2 3 3 3 2 
Score ¼ 3 0 2 1 1 1 1  

Diagnosis details Score ¼ 0 3 1 0 0 0 0 
Score ¼ 1 4 2 2 2 3 2 
Score ¼ 2 0 2 2 3 3 3 
Score ¼ 3 0 2 3 2 1 2  

Hidden details Score ¼ 0 1 3 3 1 0 0 
Score ¼ 1 2 1 2 2 3 2 
Score ¼ 2 2 2 2 4 4 5 
Score ¼ 3 2 1 0 0 0 0  

Clear boundaries Score ¼ 0 4 1 0 1 1 0 
Score ¼ 1 3 1 0 0 1 2 
Score ¼ 2 0 3 4 3 4 4 
Score ¼ 3 0 2 3 3 1 1  

Good image Score ¼ 0 5 2 1 1 1 1 
Score ¼ 1 2 2 0 2 2 1 
Score ¼ 2 0 3 4 2 4 4 
Score ¼ 3 0 0 2 2 0 1  

Fig. 13. Statistical analysis of the liver-kidney images.  
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5.2. Experiments on real USI 

Although synthetic images can provide valuable insights, they may 
not encompass all the features in genuine ultrasound imaging condi-
tions. Therefore, we also tested the proposed method on real ultrasound 
semi-videos of the liver and kidney captured using a Digisone IQ 32- 
channel US device. The proposed method’s performance in terms of 
the diagnostic value of the obtained images was evaluated by seven 
physicians with expertise in radiology, hepatology, and gastroenter-
ology, with experience levels ranging from 3 to 26 years. These physi-
cians examined the images to determine their effectiveness in diagnosis. 

Six images were created: the original image (the speckled noise 
image) and five enhanced images using the proposed method with 
different frame parameters. The six images were shuffled randomly, and 
their titles were neglected. The physicians ranked the images from 0 to 3 
in terms of smoothing, contrast, diagnosis details, detecting the presence 
of hidden details, clear boundaries, and diagnostic quality, where 
0 represented the lowest and three the highest level of performance for 
each evaluated property. 

Table 5 illustrates the scores of seven physicians for all the images in 
Fig. 14 regarding some diagnostic metrics, while Fig. 13 compares the 
proposed method’s performance in terms of statistics with those of the 
original image. The proposed method attained the highest grades for 

most of the statistics compared to the original image, as evident in 
Table 5 and Fig. 13. Based on subjective statistics analysis, image 2, with 
four frames, emerged as the best in all parameters except smoothing. In 
contrast, image 4 was the best, as indicated in Fig. 13. 

Fig. 14 compares the result of real ultrasound images obtained from 
the proposed method with the original image, which shows the effect of 
the proposed approach on reducing speckle noise while keeping all the 
diagnostic details and edges. Table 6 illustrates the timing performance 
of the system under a different number of frames used for enhancement 
and with and without optimization. 

6. Discussion 

Ultrasound imaging is a widely used medical imaging technique that 
provides real-time images of internal organs and tissues. However, ul-
trasound images are often noisy and blurry, making it difficult for 
physicians to diagnose accurately. This study proposed a complete 
processing pipeline for ultrasound image enhancement to preserve all 
crucial details for better diagnosis. 

The proposed pipeline uses previous frames and motion com-
pounding for current frame enhancement. The effectiveness of the 
pipeline was evaluated by comparing it with other well-known des-
peckle algorithms using synthetic and real ultrasound images. Physician 
feedback, in addition to evaluation metrics, approved the quality of the 
proposed pipeline. 

Motion compounding is a known technique; however, no previous 
research has explored its use in real cases. The proposed pipeline’s 
motion compounding method guarantees high-quality images without 
losing important texture details and edges. Additionally, a new motion 
computing algorithm customized for ultrasound images was proposed. 

Despite the pipeline’s success, the timing performance needs further 
enhancement based on better hardware. The algorithms can also be 
further improved using previous frame motion detection data. It was 
also found that the assumption that physicians move the probe slightly 
until they find the required frame may not be valid in all cases, as some 
expert physicians can reach the required frame quickly. This can lead to 
the inability to find the required number of frames adequate for the 
enhancement. 

In conclusion, the proposed processing pipeline significantly con-
tributes to the field of ultrasound image enhancement. It uses motion 
compounding and a customized algorithm for ultrasound images to 
preserve important texture details and edges. The pipeline’s quality was 
approved by physician feedback and evaluation metrics. However, the 
pipeline’s timing performance needs further improvement, and the al-
gorithms can be further improved using previous frame motion detec-
tion data. 

7. Conclusion 

This paper presented a new speckle reduction method based on 
motion compounding and proposed new method for motion detection 
called O-MTSS, which employs pre-located frames using MC to enhance 
the quality of the ultrasound denoising process with keeping all the di-
agnostics fine details and edges. The proposed method optimizes MTSS 
to improve motion detection and MV estimation by first employing 
Gaussian preprocessing filters on the frames. After that, the frame se-
lection stage is used to choose the frames to be stored, followed by 

Fig. 14. Comparison of despeckling results on the liver-kidney image. (a) the 
original image and (b) the proposed method with frames 3,4,5,6 and 8, 
respectively. 

Table 6 
Time performance before and after optimization.  

# Frames Time performance (msec) 

3 8 15 30 

Before optimization 370 687 1674 2417 
After optimization 63.33 69.35 85.41 99.720  
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compensation and average frames. The proposed method is evaluated 
using synthetic images, and its quality metrics are compared to other 
techniques. The results indicated that the proposed method out-
performed other SNR, PSNR, MSE, RMSE, and SSIM techniques. The 
improvements in the proposed hybrid method’s SNR, PSNR, MSE, RMSE 
and SSIM are 4.6%, 3.32%, 12.02%, 6.2% and 1.57%, respectively, over 
the NLLR method. 

Moreover, the denoised image produced by the proposed method 
showed higher speckle noise reduction and edge preservation perfor-
mance, and the image’s details are well preserved. Furthermore, the 
proposed technique is evaluated using real USI through subjective ra-
diologists and physicians, and the results showed image quality 
improvement compared to the original USI. Finally, further advance-
ments in processing speed can be achieved by utilizing more advanced 
computing technologies such as GPUs or high-end CPUs. 

The motion-compounding method has the potential for improvement 
through physician assistance and enhanced smoothing quality. 
Furthermore, we anticipate this method will exhibit more diagnostic 
features as the speckle noise is effectively removed. Therefore, further 
research should be conducted to explore its potential for enhancing 
diagnostic capabilities. 

Furthermore, utilizing GPUs can provide ample processing capacity 
to pursue further enhancements. Previously, we faced certain limitations 
in maintaining real-time solutions and had to rely on mid-range GPUs. 
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